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Abstract Recently, both companion-matrix methods and subdivision algorithms have been developed
for finding the zeros of a truncated spectral series. Since the Chebyshev or Legendre coefficients of deriv-
atives of a function f (x) can be computed by trivial recurrences from those of the function itself, it follows
that finding the maxima, minima and inflection points of a truncated Chebyshev or Fourier series fN(x)
is also a problem of finding the zeros of a polynomial when written in truncated Chebyshev series form,
or computing the roots of a trigonometric polynomial. Widely scattered results are reviewed and a few
previously unpublished ideas sprinkled in. There are now robust zerofinders for all species of spectral
series. A transcendental function f (x) can be approximated arbitrarily well on a real interval by a truncated
Chebyshev series fN(x) of sufficiently high degree N. It follows that through Chebyshev interpolation and
Chebyshev rootfinders, it is now possible to easily find all the real roots on an interval for any smooth
transcendental function.

Keywords Companion-matrix methods · Gegenbauer · Spectral series · Spherical harmonics ·
Trigonometric polynomial

1 Introduction

The book review [1] catalogues no fewer than 18 books on Chebyshev, Legendre and Fourier spectral
methods. However, none of these books discusses how to analyze these spectral series for zeros, stationary
points and inflection points. One can of course apply the two old standbys: (1) the MAGS (Make-A-Graph–
Stupid) method, which is to plot fN(x) on a fine grid and observe where it crosses the axis and (2) Newton’s
iteration, which can refine MAGS-generated approximations to machine precision. For finding the roots
of a polynomial in the usual “monomial” or “powers-of-x” form, however, neither is necessary: every
software library has robust “black box” solvers that require nothing from the user except the coefficients
of the polynomial. In recent years, equally effective “black box” methods have been developed for spectral
series. The rest of this article will briefly explain them.
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There are two families of methods of general applicability: companion-matrix methods and subdivision
algorithms. Frobenius showed more than a century ago that the roots of a polynomial are the eigenvalues
of the “Frobenius companion matrix” whose elements are trivial functions of the coefficients of the poly-
nomial. The default rootsolver in Matlab, for example, via the “roots” command, is a companion-matrix
method. In the next section, we review companion-matrix methods for orthogonal polynomials and Fourier
series.

The other family of algorithms subdivide the target interval, and compute the zeros as the roots of local
Chebyshev approximations on each subdomain. These are harder to program, but faster for polynomials
of high degree. Because the target function is a polynomial, one can derive rigorous error bounds that
make the subdivision methods very robust.

Since spectral series converge much slower off the expansion interval, the emphasis will be on real roots
on the expansion interval. Companion-matrix methods furnish all roots of the polynomial fN(x). However,
roots in the complex plane where the spectral series is diverging will only be spurious approximations to
zeros of the transcendental function f (x) that the truncated spectral series is approximating. Even at points
only slightly off the real axis where the spectral series is still converging, the rate of convergence of fN(x)
to f (x) will be much poorer than for real x. So, in the rest of this article, we shall discuss real roots on the
interval only.

For many years, software libraries have contained reliable polynomial rootfinders that compute all roots
without any user input except the coefficients of the polynomial. Unfortunately, it has not been possible
to extend these techniques to computing zeros of transcendental functions f (x), which must be computed
one-at-a-time by Newton’s method, assuming a sufficiently good first guess is available, or by bisection,
which often misses roots. In Sect. 5, we explain that Chebyshev interpolation can be combined with the
Chebyshev rootfinders to create a “blackbox” for computing all zeros of a smooth transcendental function
on a real interval [2–4].

2 Companion-matrix methods

2.1 Chebyshev polynomials

Theorem 1 (Chebyshev companion matrix) Let fN(x) denote a polynomial of degree N written in
“Chebyshev form” as

fN(x) =
N∑

j=0

aj Tj(x). (1)

Then all roots of fN(x), both on and off the canonical expansion interval, x ∈ [−1, 1], are eigenvalues of the

N × N matrix ��A whose elements are

Ajk =

⎧
⎪⎨

⎪⎩

δ2,k, j = 1, k = 1, 2, . . . , N
1
2

{
δj,k+1 + δj,k−1

}
, j = 2, . . . , (N − 1), k = 1, 2, . . . , N,

(−1)
aj−1
aN

+ (1/2)δk,N−1, j = N, k = 1, 2, . . . , N,

(2)

where δjk is the usual Kronecker delta function such that δjk = 0 if j �= k while δjj = 1 for all j. ([13] and
earlier sources.)
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For a quintic polynomial, for example,
∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0
(1/2) 0 (1/2) 0 0

0 (1/2) 0 (1/2) 0
0 0 (1/2) 0 (1/2)

(−1) a0
2 a5

(−1) a1
2 a5

(−1) a2
2 a5

(−1) a3
2 a5

+ (1/2) (−1) a4
2 a5

∣∣∣∣∣∣∣∣∣∣

. (3)

To make a practical algorithm, one must balance the matrix before computing its eigenvalues, as is done
automatically in the Matlab “eig” command, and then sort the roots so as to discard all those that fail
to lie within a small tolerance ε of the interval x ∈ [−1, 1]. The reason for the tolerance is that the usual
roundoff error may perturb the eigenvalues slightly off the interval, especially for multiple roots, which
are notoriously ill-conditioned.

It is easy to polish the eigenvalues by one or two Newton’s iterations:

x(m+1)
root = x(m)root − fN(x

(m)
root)

df/dx(x(m)root)
(4)

where m is the iteration number. Note that it is trivial to compute the necessary derivative by recurrence
as explained in Sect. 4.

An alternative is to convert the Chebyshev form to the usual powers-of-x form. This is easy, but the
condition number of the transformation matrix grows as 0.04 N2.4 = 0.04N1+√

2, which limits this strategy
to rather modest N [3]. The Chebyshev companion matrix given here is the better way.

Companion matrices for Legendre, Gegenbauer, Hermite and general orthogonal polynomials are given
in Appendix A.

2.2 Trigonometric polynomials and Fourier series

At present, it is not known how to construct a matrix whose eigenvalues are the roots of a truncated Fourier
series, fN(t), as given by (8) below. However, the transformation

z = exp(it) (5)

converts a trigonometric polynomial fN(t)with 2N +1 terms into an ordinary polynomial h(z) of degree 2N
as independently discovered several times [3, 5, 6]. The “associated polynomial”, h(z[t]) ≡ exp(iNt)fN(t),
is

h(z) = 1
2

2N∑

k=0

hk zk ≡ zN f (t[z]), (6)

where

hj =
⎧
⎨

⎩

aN−j + i bN−j, j = 0, 1, . . . , (N − 1),
2 a0, j = N
aj−N − i bj−N , j = N + 1, N + 2, . . . (2N).

(7)

From this transformation comes the following.

Theorem 2 (Fourier companion matrix) Define the trigonometric polynomial

fN(t) ≡
N∑

j=0

aj cos(jt)+
N∑

j=1

bj sin(jt). (8)
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The matrix elements Bjk of the Frobenius matrix for a trigonometric polynomial of general degree N (and
therefore (2N + 1) terms) are

Bjk =
{
δj,k−1, j = 1, 2, . . . , (2N − 1),
(−1) hk−1

aN−ibN
, j = 2N,

(9)

where δjk is the usual Kronecker delta function such that δjk = 0 if j �= k, while δjj = 1 for all j and k and the
hj are defined by (7).

The roots tk of fN(t) are the negative of
√−1 times the logarithm of the matrix eigenvalues zk:

tk,m ≡ arg(zk)+ 2πm − i log(|zk|), k = 1, 2, . . . , 2N; m = integer. (10)

In particular, the real-valued roots of fN(t) for real t ∈ [−π ,π ] are the angles of the roots of h(z) on the unit
circle. Equivalently, each real-valued root tk of f (t) on t ∈ (−π ,π ] is connected to a root zk of the associated
polynomial through tk = arg(zk)∀ k such that |zk| = 1 where arg(z) is the usual complex argument function
such that, for z = |z| exp(iθ), arg(z) = θ . (Previously unpublished.)

For N = 2, the Fourier–Frobenius matrix is explicitly
∣∣∣∣∣∣∣∣

0 1 0 0
0 0 1 0
0 0 0 1

(−1) a2+ib2
a2−ib2

(−1) a1+ib1
a2−ib2

(−1) 2 a0
a2−ib2

(−1) a1−ib1
a2−ib2

∣∣∣∣∣∣∣∣
. (11)

The transformation t = −i log(z) between the trigonometric polynomial in t and the ordinary polynomial
in z does not amplify errors [5].

A useful corollary is that fN(t) has exactly 2N roots, when the roots are counted according to their
multiplicity, in the strip of the complex plane such that −π < Re(t) ≤ π . (Note that roots with Re(t) = −π
are excluded.)

2.3 Costs of the companion-matrix method

The companion matrix/QR method has a cost which grows as N3 as illustrated in Fig. 1 for both Chebyshev
series (left) and Fourier series (right). The Chebyshev method has a cost which is O(12N3); the Fourier
cost is O(500N3). Part of the reason that the Fourier method is so much more costly for a given N is that
a Fourier polynomial of degree N generates a companion matrix of size 2N × 2N, which increases the
cost by a factor of eight over the Chebyshev case. The other difference is that, because the Fourier matrix
elements are complex-valued, the matrix balancing/QR algorithm does a lot more complex arithmetic than
in the Chebyshev case.

2.4 Errors in companion matrix methods

Toh and Trefethen have analyzed the numerical conditioning of the companion matrix [7]. They found that,
if the matrix is “balanced” by a diagonal similarity transform in the sense of [8], then the condition number
of the balanced companion matrix was only a little worse than that of the underlying polynomial zeros.
We shall not discuss balancing further because this is automatic in EISPACK and in the Matlab “roots”
command.

For the Fourier companion matrix, the transformation z = exp(it) amplifies errors in complex-valued
roots of fN(t) because roots at a moderate distance |tim| below the real axis are mapped into roots of large
modulus exp(|tim|). However, the error in the approximation of a function f (t) by the truncated Fourier
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Fig. 1 Floating-point operation counts, divided by N3, for an ensemble of polynomials with random coefficients and various
N. Left panel: Chebyshev. Right panel: Fourier. (Note that a Fourier polynomial of degree N actually has 2N + 1 terms,
and has an associated polynomial of degree 2N.) The amplitudes of the coefficients were multiplied by 1/(1.2)j where j is
the degree to mimic the exponential decay of Chebyshev coefficients of functions analytic on x ∈ [−1, 1] and of Fourier
coefficients of periodic, analytic functions. Circles: cost for a particular polynomial. The thick solid curve connects the average
of an ensemble of 15 random polynomials for each polynomial degree N. The thin dashed line on the left is at 12; the right
guideline is at 500. Computations were performed in Matlab 5.2, which by default “balances” the matrix before applying the
QR algorithm to find the eigenvalues

series fN(t) grows as exp(N|tim|), which is the Nth power of the growth in errors of the companion matrix.
Thus, the exponential change-of-coordinate in the associated polynomial method does not cause difficul-
ties, except for those roots, namely those of large negative tim, which would be poor approximations to
those of f (t) even if the zeros of fN(t) were computed exactly.

Thus, the theoretical analysis asserts that the companion matrix/associated polynomial scheme is very
well-conditioned for finding the real roots of fN(t) [and the function it approximates, f (t)] and, with less
accuracy, roots of small imaginary part. Similar remarks apply to the Chebyshev companion matrix: highly
accurate and well-conditioned for roots on the interval, much less accurate for roots far from the interval
x ∈ [−1, 1] which are likely to be rubbish.

To numerically support these arguments, we tested the algorithm on an ensemble of trigonometric
polynomials with random coefficients. (Similar experiments for polynomials in Chebyshev form are given
in [9].) For the first set of experiments, we employed what in signal processing would be called a “white
noise” spectrum: the coefficients had the same range of values regardless of degree. The Fourier series of
periodic, analytic functions fall exponentially fast with degree [10], however, so we also performed tests in
which the random coefficients were multiplied by a factor that decays exponentially fast with degree, a “red
noise” spectrum in the sense that most of the amplitude is in coefficients of low degree. We then evaluated
f (t) at each of the numerically generated roots and took the L∞ norm of the vector of the residuals thus
obtained.

Figure 2 shows that the errors grow with N — but not very fast. The “white noise” polynomials are the
worst case: the dashed fitting curve shows that the errors grow proportional to N2, roughly. However, the
proportionality constant is machine epsilon, 2 × 10−16, so the error is extremely small unless N is huge.
Note that the roots from the companion matrix can always be “Newton–polished” by iterating once or
twice with the Newton–Raphson iteration for each root to refine the zeros to near machine precision.

For the red-noise case, which is more typical of applications, the error grows only as O(
√

N). Though one
must be cautious about extrapolating from these examples to the Fourier series that arise in applications,
which have non-random coefficients, the numerical evidence is fully consistent with the theoretical analysis
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Fig. 2 Circles: maximum absolute value of the residual at the numerically-computed real roots for individual trigonometric
polynomials with random coefficients. (The “residual” is just the value of f (t) at the numerically computed root, which of
course is zero if the root is exact.) The thick solid curve connects the average of an ensemble of fifteen random polyno-
mials for each polynomial degree N. Left panel: a “white noise” set of coefficients. The thin dashed curve is a fitting line,
2× 10−16N2. Right panel: Same as the left panel except that the random coefficients aj, bj were multiplied by 1/(1.2)j to make
the coefficients a “red noise” spectrum. The thin dashed curve is a fitting line, 8 × 10−16

√
N

of the preceding section and strongly suggests that the associated polynomial method is very accurate and
reliable for real roots of trigonometric polynomials.

Comprehensive tests of this sort are difficult because the Fourier coefficients in applications are not
random, but rather have considerable structure. But what structure? Jónsson and Vavasis did not merely
randomly vary the coefficients between ±1, but randomly varied the magnitude of the range, too [11].
However, the magnitude is not random either, but rather decreases exponentially fast with superimposed
oscillations. It is probably best to blend both random examples and structured examples drawn from
applications, such as the Mathieu functions treated in [12]. It is heartening that for both random polyno-
mials and applications [13], the companion matrix methods are remarkably stable and accurate.

One final worry is that for typical spectral series, the exponential decrease of the spectral coefficients
with degree implies that the highest coefficient is very tiny. This is worrisome because this coefficient is the
divisor of all the terms in the last row of the companion matrix. However, the numerical experiments of
the next section and the extensive experiments for the related case of Chebyshev polynomial companion
matrices [9], applied to trigonometric rootfinding in later sections, suggest that the smallness of the highest
coefficient is rarely a problem. Perhaps the only exception is when fN(x) is of definite parity so that the
highest coefficient is identically zero; the fix is to simply decrease N by one.

If the smallness of the highest coefficient is a problem, somehow, a remedy is merely to solve a generalized
eigenvalue problem [11], but this remedy seems rarely needed here.

2.5 Orthogonal polynomials and Fourier series with parity symmetries

In applications, one often encounters functions which are symmetric with respect to x = 0, that is f (x) =
f (−x), or antisymmetric such that f (x) = −f (x). The Chebyshev, Legendre, Hermite, Gegenbauer and
Fourier series for such functions of “definite parity” then contain only half as many non-zero terms as
a general series of the same degree. The cost can be reduced by a factor of eight by special methods
that yield companion matrices or reduced problems with half the size of the general case. Boyd and Gally
developed a parity-exploiting reduction for Chebyshev polynomials [9]. A similar treatment for orthogonal
polynomials in general and for Fourier series is given in [12].
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Because these methods for symmetric polynomials are somewhat specialized and have been published
elsewhere, we omit them here. However, when applicable, the savings are always at least an order-of-
magnitude in computer time.

3 Subdivision methods

In their downloadable “chebfun” library, Battles and Trefethen have extended Matlab from vectors
and matrices to functions and operators by replacing functions by their approximations as Chebyshev
interpolants — i.e., polynomials in Chebyshev form where the degree N may be as high as the thou-
sands. This is “Chebyshevization” on a grand scale, and rootfinding-in-Chebyshev-form is an essential
component [6].

Obviously, when N is in the thousands, a companion-matrix method, with its cost growing as N3, is
extremely expensive. The cheapness of subdivision is that, if the interval is divided into Ns parts, and a
polynomial of degree M ≈ N/Ns is applied on each subdomain, then the total cost of computing the
eigenvalues of Ns smaller matrices will be smaller than finding the eigenvalues of a single large N × N
matrix by a factor of N2

s !
In reality, this estimate is overly optimistic because to retain the same accuracy, it is usually necessary

to use a local degree M which is larger, perhaps much larger, than N/Ns where N is assumed to be a
satisfactory degree for the “global” Chebyshev series that is accurate over the entire target interval. Nev-
ertheless, subdivision can be very much cheaper than applying a single companion matrix. Indeed, a simple
subdivision strategy is now incorporated into the “chebfun” library.

Broadly speaking, there are four main options. One is to use a moderate number of subdivisions with
polynomials of moderate degree; another is to use a huge number of subdivisions with very-low-degree
approximations, such as cubic polynomials, on each subdomain [14]. The third option is to make a rather
coarse initial subdivision and then deploy various theorems to identify subdomains that are provably
“zero-free”. One can then subdivide zero-possible intervals, as in bisection, until each subdomain is zero-
free, or the surviving intervals are so narrow that a low-degree approximation is provably accurate, and can
be cheaply solved to find the roots [15]. All these options are based on rigorous theoretical error bounds.

Some observations greatly improve the robustness and efficiency of these three varieties of subdivision
schemes. First, the biggest challenge for the local, low-degree approximations is to represent the highest
term included in the truncation, TN(x): if we can prove that the local approximation is accurate for TN(x),
then it will be good for all the lower and slower-varying terms in the polynomial fN(x). Second, Chebyshev
polynomials oscillate very non-uniformly with extremely rapid oscillations near the endpoints and much
slower oscillations near the center of the interval. This non-uniformity can be removed by making the
change of variable x = cos(t) which transforms a polynomial in Chebyshev form in x into a cosine polyno-
mial in t. One can prove much tighter error bounds for the approximation of fN(cos(t)) than for the original
polynomial in x. It is then comparatively easy, as explained in [14, 15], to use Cauchy’s Interpolation Error
Theorem to come up with errors in approximating cos(Nt), which then are upper bounds for approximating
fN(cos(t)).

Boyd recommmends as a high-order scheme the “Tredecic” algorithm, which is to subdivide the interval
into N subintervals that are equally spaced in the trigonometric coordinate t and then deploying a local
approximation of degree thirteen on each subdomain at a cost of roughly 22,000N + 70 log2(N) floating
point operations [14] . Using 500N subdivisions with cubic polynomials on each also guarantees an absolute
approximation error to fN(cos(t)) which is no worse than 10−12, but this “Megacubes” method is always
more expensive than the Tredecic. If, however, one can tolerate a higher error tolerance such as 10−8, then
the number of subdivisions drops to Ns = 50N, and “Megacubes” is faster for large N. The best subdivision
method is faster than the Chebyshev companion-matrix method for N ≥ 50 at the higher error tolerance
and for N> 25 at an approximation error tolerance of 10−8.
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The fourth class of subdivision schemes is to arbitrarily choose an initial number of subdivisions Ns and
an initial local degree M, and then rely on an adaptative Chebyshev interpolation scheme to increase M,
and further subdivide individual subdomains, until a sufficiently accurate approximation has been obtained
over the whole domain, and finally apply the companion-matrix method to generate the roots for each
subdomain. Adaptation strategies are discussed further in Sect. 6 below; a new Bernstein-polynomial-
based test for a “zero-free” interval was recently published in [16]. Such adaptive subdivision is easier to
program and potentially much less expensive than the schemes of [14] and [15], which are very safe (being
based on rigorous theoretical bounds) but also very conservative (designed to defend against possible but
improbable worst cases.)

In reality, assessing the relative merits of the Chebyshev rootfinders is not straightforward. The
Chebyshev companion-matrix method is ridiculously easy to program: a sample Matlab code containing
just five lines and eleven statements is given as Table 2 below. It may be better to use a slow-but-easy-to-
program algorithm than to waste human labor on a fast-but-elaborate method; as the old arithmurgical
proverb goes, “A good workstation never sleeps.” Furthermore the subdivision algorithms contain a lot of
loops, conditionals and other overhead which is hardware-dependent and not captured by formal floating-
point-operation counts.

4 Maxima, minima and inflection points

The maxima and minima of a function f (x) are always located at roots of the first derivative. Similarly, the
inflection points where the curvature of a function changes sign are the zeros of the second derivative. If
f (x) is in fact a truncated Chebyshev series, then the necessary derivatives can be computed by recurrence.

Let a(q)k denote the coefficients of the qth derivative:

dqf
dxq =

N−q∑

k=0

a(q)k Tk(x). (12)

These may be computed from the Chebyshev coefficients of the (q − 1)st derivative by the recurrence
relation (in descending order)

a(q)N−q+2 = a(q)N−q+1 = 0, (13)

a(q)k−1 = 1
ck−1

{
2 k a(q−1)

k + a(q)k+1

}
, k = N − q + 1, N − q, N − q − 1, . . . , 1,

where ck = 2 if k = 0 and ck = 1 for k > 0. Similar recurrences for Legendre and other spectral series can
be found in [10, Appendix A] and numerous other sources.

Thus, maxima, minima and inflection points may be computed by first computing the Chebyshev coeffi-
cients of as many derivatives of fN(x) as necessary, and then computing the roots of the derivative series.
Computing the maxima and minima and inflection points are all problems in rootfinding.

5 Finding the roots of a transcendental function

If a function f (x) is smooth on an interval [a, b], it can always be “Chebyshevized” on that interval by
Chebyshev interpolation. One can then find the roots of a transcendental function f (x) on the interval
by finding the zeros of its polynomial proxy, fN(x). Similarly, periodic functions can be approximated by
trigonometric polynomials, and the roots of these proxies can be computed by the methods described
earlier. It is thus possible to extend the existence of robust black-box rootfinders from polynomials to all
smooth transcendental functions.
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The details are described in [2–4, 9, 12, 13, 15–17], so we shall content ourselves with an amusing example
and a brief analysis of the remaining theoretical and practical difficulties.

The amusing example is Kepler’s equation from celestial mechanics:

E − ε sin(E)− M = 0, (14)

where the unknown E(M, ε) is the “eccentric anomaly” of an orbit and ε is the eccentricity of the orbit. At
least five hundred papers have been published on this problem over the last four centuries, and fresh ones
still appear at an average of one or two a year [17]. Inserting the Chebyshev series

sin(πx) = 2
∞∑

k=0

(−1)k J2k+1(π)T2k+1(x), x ∈ [−1, 1] (15)

converts the transcendental equation into a polynomial equation. If the series is truncated at fifteenth order
and the result is rearranged into an ordinary polynomial, then the Kepler equation becomes approximately

M = E − ε

{
3.14

E
π

− 5.16
(

E
π

)3

+ 2.55
(

E
π

)5

− 0.599
(

E
π

)7

+ 0.082
(

E
π

)9

− 0.0073
(

E
π

)11

+ 0.00046
(

E
π

)13

− 0.000018
(

E
π

)15
}

, (16)

where the numbers have been truncated to the first three significant figures only to simplify the display. The
maximum absolute error in computing the root of Kepler’s equation by solving this proxy is only 4 × 10−10

for all ε ∈ [0, 1] and for all M ∈ [−π ,π ], which is the entire range of interest for elliptical and parabolic
orbits. The simplicity of the polynomial approximation seems rather an anticlimax after four centuries of
relentless and highly variegated ingenuity.

The Chebyshev-transcendental-rootfinding method has five issues requiring further discussion:

1. Iterative refinement
2. Choice of approximation interval.
3. Smoothness of f (x)
4. Dynamic range of f (x)
5. Adaptive Chebyshev interpolation, perhaps with subdivision

The companion matrix and subdivision methods are all global methods in the sense that they approximately
compute all the roots on the canonical interval, which is x ∈ [−1, 1] for Chebyshev polynomials. Although
these algorithms are capable of achieving near-machine precision, this is not really necessary, especially
when the polynomial fN(x) is used as a proxy for a transcendental function f (x). One can use Newton’s
iteration to refine the approximate roots of fN(x) to machine-precision-accurate roots of f (x).

One drawback of the Chebyshev-proxy method is that the user must choose an approximation interval,
x ∈ [a, b], which is to be searched for roots. (Through a trivial change of variable, this can be mapped to the
canonical interval for Chebyshev polynomials, x ∈ [−1, 1].) To find all zeros on the whole real axis, even if
there are an infinite number of them, does not necessarily defeat the Chebyshev-proxy strategy: one can
often find asymptotic approximations for large roots, thus requiring the user to numerically compute only
a finite number of roots on a finite interval, or if the number of roots is finite, one can use a coordinate
change to map the infinite interval into a finite one, as illustrated in [3]. Still, when f (x) is transcendental,
the user cannot be entirely spared the obligation of knowing at least a little about the target function and
its roots.

The third issue is obvious to anyone familiar with Chebyshev interpolation: the approximation converges
rapidly only if f (x) is infinitely differentiable everywhere on the approximation interval x ∈ [a, b]. The
method will not be accurate for a non-smooth function like sin(10|x|) on x ∈ [−1, 1], for example, because
the first derivative is discontinuous at the origin.
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The fourth complication is that a function f (x) may be huge on some subintervals of interest but very
tiny on others. An example is

f (x) = exp(−100x2) sin(50x) (17)

on x ∈ [−1, 1]. Chebyshev interpolants are highly uniform in absolute error, but for a function like (17),
this translates into rather bad relative errors near the ends of the interval where the function is oscillating
between extremely small peaks and valleys. In photography, this is the “dynamic range” problem; in a
scene with a high contrast, a photograph focused on features in bright sunlight will capture areas in shadow
as solid black, whereas a photograph focused on the shadows will “wash out” the bright regions as patches
of solid white. One remedy as discussed in [2] is to multiply f (x) by a positive function that removes the
variations in range; for (17), one can define

g(x) ≡ exp(100x2) f (x) = sin(50x) (18)

and then all the peaks and valleys of the rescaled function are one, and the Chebyshev-proxy rootfinder
is extremely accurate for all roots. Another strategy is to subdivide the interval into multiple subintervals
and find the roots of separate, low-degree Chebyshev interpolants on each subdomain. As noted above,
subdivision is often a very good strategy for reducing cost; for functions with a large dynamic range, it also
is an excellent strategy for improving accuracy.

Lastly, when a Chebyshev rootfinder is applied to find the roots of a polynomial fN(x) that is really a sort
of mathematical stunt double for a transcendental function f (x), the accuracy of the roots can be no better
than the accuracy of the approximation of f (x) by its Chebyshev interpolant fN(x). Furthermore, the goal
is not merely to obtain an approximation with a small absolute error, but rather one in which the relative
errors are small over the entire target interval.

To meet this goal, a wide variety of rather simple-minded adaptive Chebyshev strategies have been
employed. Since the “adaptation issue” has not been discussed in any of the rootfinding articles mentioned
above, it is appropriate to delve a little deeper here.

6 Adaptive Chebyshev interpolation

“However it has been the authors’ experience that |aN | in general provides a satisfactory error estimate even
when the convergence of the corresponding Fourier–Chebyshev expansion is slow, and that it dominates
the error when convergence is rapid.”

W. Fraser and M. W. Wilson [18].
If f (x) is analytic on the expansion interval, then its Chebyshev coefficients will fall geometrically. If the

coefficients are of the asymptotic form

an ∼ p exp(−qn), (19)

where p and q are positive constants, then when the series is truncated after aN , the truncation error EN is
bounded by [[11], Chapter 2]

EN ≤ p exp(−qN)
exp(−q)

1 − exp(−q)
. (20)

Unless exp(−q) is very close to one, the order-of-magnitude of the error is the same as |aN |, which is the
“Last Coefficient Rule-of-Thumb” of [10].

Other authors have used more sophisticated criteria as catalogued in Table 1. Some have tried to fit
the asymptotic form (19). However, as explained with examples in [[10], Chapter 2] it is common for
Chebyshev coefficients to oscillate with degree. Convergence theory guarantees that the coefficients an can
be bounded from above by p exp(−qn), the “envelope” of the coefficients, for some p and q, but the decay
often is non-monotonic. A function with parity such as cos(x) is an extreme example: all its odd coefficients
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Table 1 Adaptation
criteria for Chebyshev
series ε is a user-chosen
tolerance and N is the
highest retained
Chebyshev degree

Reference Error test

[21] k2|aN−2|, k|aN−1|, |aN | ≤ ε

k typically 1/8
[18] |aN | ≤ ε

[19] Separate treatment of even and odd coefficients
p exp(−qn)/(1 − exp(−q)) < ε

where p, q, n fitted to the last three coefficients
of each parity

[22] |aN−2|, |aN−1|, |aN | ≤ ε maxn |an|
[6] |aN−1|, |aN | ≤ 2 machine epsilon
[23] Fitting of last few coefficients

by decaying exponential p exp(−qn):
p exp(−qn)/(1 − exp(−q)) < ε

This work maxj∈[0,2N] |f (xj)− fN(xj)| ≤ ε

xj are the points of a (2N + 1)-point
Lobatto grid

are zero. For this reason, Sloan and Smith fit the even-degree and odd-degree coefficients separately, and
then increase the number of grid points if the larger of the two errors exceeds the user-chosen tolerance
[19]. Similarly, other authors such as Jacobs and Battles and Trefethen examine the last three or last two
coefficients.

However, it is easy to construct examples which can defeat such schemes using the following.

Theorem 3 (Lacunary Chebyshev Series) Suppose

f (x) ≡ g(Tk(x)), (21)

where k is an integer and g(x) is analytic everywhere on x ∈ [−1, 1]. Then all Chebyshev coefficients of f (x)
whose degrees are not multiples of k are zero, that is,

f (x) ≡
∞∑

n=0

ankTnk(x). (22)

Proof

With the trigonometric change of coordinate, x = cos(t), f (cos(t)) = g(cos(kt)). With the further change of
coordinate T ≡ kt, this becomes g(cos(T)) which, because of the analyticity of g has a nice Fourier-cosine
series in T. Converting this series back to t gives a Fourier series in which all terms, except those whose
degrees are multiplies of k, are missing. Converting from t back to x gives the theorem. QED

Thus, a function like f (x) = (3/4)/(5/4 − T7(x)) = 1 + 2
∑∞

n=1(1/2)
nT7n(x) can fool adaptive schemes

that examine just the last three coefficients. However, it is unclear if such functions with “runs” of three or
more zero coefficients ever arise in applications.

Indeed the situation for simple Chebyshev error tests is probably rather like that of Gaussian elimination
[20]: the worst case is very bad, but in a probalistic sense, the chances of trouble are actually rather small.
Unfortunately, at present, no way is known to quantify “typical” Chebyshev series.

We shall therefore briefly describe a “super-safe” strategy. First, compute the Chebyshev interpolant
fN(x) on the Lobatto (endpoints-and-extrema) grid where N, to allow the use of the fast cosine transform,
is a power of two. Second, calculate the maximum error of the interpolant at the points of a Lobatto grid
with 2N + 1 points:

Einterstices(N) ≡ max
j∈[0,2N] |f (xj)− fN(xj)|. (23)
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Third, compare Einterstices(N) with the user-chosen error tolerance ε. If Einterstices(N) > ε, then compute
f2N(x) by interpolation at the points of the (2N + 1)-point Lobatto grid and repeat. The choice of N as a
power of two, and the decision to evaluate the error on a grid of 2N + 1 points, has the advantage that
all Chebyshev computations can be performed by the fast cosine transform, and since every point on the
interpolation grid for N is also part of the Lobatto grid when N is doubled, all evaluations of f (x) are
recycled each time N is doubled. Of course, the error is zero at the N + 1 points where fN(x) interpolates
f (x), so the extra N points lie, in the trigonometric coordinate t = arccos(x), at the midpoints of each
subinterval between points where fN(x) = f (x). Thus, the error is evaluated at those points where it is
expected to be worse.

This “super-safe” strategy is still not infallible. It will be fooled, for example, if N is chosen to
be initially sixteen, say, and f (x) happens to be zero at each of the points of a 33 point Lobatto
grid: the adaptation will stop with a Chebyshev approximation that is identically zero! However, it is
obvious that f (x) which satisfy 31 conditions are much less likely than f (x) whose Chebyshev series satis-
fies the three conditions that aN−2, aN−1 and aN are all zero for some N, even though higher coefficients
are non-zero. Like a kindly financial advisor, we shall leave each reader to find his or her own com-
fort point on the risk-versus-cost scale. The probabilities of being tripped up by the various strategies
catalogued in the table are at present as uncertain as the future performance of the stock market.

7 History

The companion-matrix idea was generalized to orthogonal polynomials independently in [13, 24–28]. The
early work, however, died out like homo neanderthalensis. The papers on solving transcendental equations
by Chebyshev interpolation of f (x) [2, 3] and Battle and Trefethen’s development of a Chebyshev-interpo-
lation-based extension of Matlab to functions of a continuous variable inspired the flurry of recent papers
cited above.

Similarly, there was much activity on finding the roots of trigonometric polynomials between 1982 and
1994, but no papers in the following 11 years.

The first trio of trigonometric papers employed a generalization of the Durand–Kerner iteration for
simultaneously finding all roots of a polynomial [29–31]. Frommer gave a more abstract justification of the
trigonometric Durand–Kerner method that simplified the proof that the algorithm converges quadratically
near the roots and slightly simplified the algorithm [32]. Another Durand–Kerner article is [5], which is
the earliest appearance of the z = exp(it) transformation for converting a trigonometric polynomial into
an ordinary polynomial.

Schweikard introduces three new ideas. The first is the conversion of a trigonometric polynomial to an
algebraic polynomial through a different (and less simple) means than Weidner: the transformation [33]

t = 2 arctan(x) ↔ x = tan(t/2). (24)

This implies the identities

cos(t) = 1 − x2

1 + x2 , sin(t) = 2x
1 + x2 . (25)

Since cos(jt) and sin(jt) can be expanded as series of powers of cos(t) or as sin(t) times a cosine polyno-
mial, an arbitrary trigonometric polynomial can always be transformed into a rational function of x, which
becomes an ordinary polynomial after multiplying through by the appropriate power of 1 + x2. This trans-
formation is more cumbersome than Weidner’s, but it has the advantage that trigonometric polynomials
with real coefficients are transformed to algebraic polynomials with real coefficients.

The second is the observation that the concept of a “square-free” polynomial, that is, one that has only
simple roots, can be extended to trigonometric polynomials [33]. The algorithm is to convert to an algebraic
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polynomial, calculate the square-free algebraic polynomial, and then convert back to trigonometric form.
This can be done without error in a computer-algebra system if the coefficients are rational or algebraic
numbers.

The third idea is interval arithmetic [34]. In a trio of papers, Carstensen and collaborators developed
the interval arithmetic ideas at greater length and generalized the Durand–Kerner simultaneous rootfind-
ing method to higher-order iterations, that is, those converging faster than quadratically [35–37]. Carstensen
and Petkovic note that Weidner’s transformation, which yields an algebraic polynomial with complex coeffi-
cients, even when the original trigonometric polynomial has only real coefficients, is undesirable in interval
arithmetic methods because the intervals are forced to become bounding rectangles in the complex plane.

The preoccupation with the Durand–Kerner iteration is a bit surprising. For ordinary polynomials, expe-
rience shows that, if the starting points are chosen on a circle in the complex plane which encloses all the
roots, the algorithm usually converges. Although convergence is guaranteed to be quadratic very close
to the roots, the Durand–Kerner method often converges quite slowly for the early iterates. For multiple
roots, the Durand–Kerner method converges linearly, that is, as δm for some δ < 1 where m is the iteration
number. All these remarks carry over to applications to trigonometric polynomials. In particular, there is
no global convergence theory — only theorems about rates of convergence near the roots. No comparisons
with the Fourier companion-matrix method have yet been made.

8 Conclusions

There are now robust algorithms for finding the zeros of truncated Fourier series and orthogonal polynomi-
als. Companion-matrix methods, which are very easy to program and extremely well-conditioned, should
be the first choice, second choice and third choice for computing the roots of polynomials in Chebyshev
form and trigonometric polynomials.

However, when the polynomial fN(x) is of high degree N, subdividing the search interval into subdo-
mains and finding the roots of local Chebyshev interpolants of moderate degree on each subdomain, will
be much cheaper than applying the companion matrix method to fN(x) directly: the cost of the companion
matrix method is O(12N3) floating-point operations. Furthermore, subdivision is accuracy-increasing, too,
when f (x) is oscillating between wildly different ranges in different parts of the interval [2], i.e. exhibits the
“dynamic range” problem.

Adaptive Chebyshev interpolation is a key ingredient both in solving transcendental equations by
Chebyshev interpolation-followed-by-Chebyshev-companion-matrix-eigensolving, and also in subdivision
methods for solving a polynomial of high degree. Good ad hoc strategies are available, as described above,
but no perfect strategy is possible, because, except for the approximation of one polynomial by another,
one can always devise exotic examples to mislead any particular error test [14, 15].
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Appendix. Companion matrices for Legendre, Hermite, Gegenbauer and general orthogonal polynomials

A.1 Legendre companion matrix

Theorem 4 (Legendre companion matrix) Let fN(x) denote a polynomial of degree N written in “Legendre
form” as
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Table 2 Matlab code for
the Legendre polynomial
companion matrix

% Input: coefficients s(1), ..., s(N + 1) for truncated Legendre series of degree N
P = zeros(N, N); P(1, 2) = 1; P(N, 1) = −(s(1)/s(N + 1)) * (N/(2 ∗ N − 1));
for j = 2 : (N − 1), P(j, j − 1) = (j − 1)/(2 ∗ j − 1); P(j, j + 1) = j/(2 ∗ j − 1);
P(N, j) = −(s(j)/s(N + 1)) ∗ (N/(2 ∗ N − 1)); end
P(N, N − 1) = P(N, N − 1)+ (N − 1)/(2 ∗ N − 1); P(N, N) = −(N ∗ s(N)/(s(N + 1)∗
(2 ∗ N − 1))); rootsfromeig = eig(P); % compute Legendre roots

fN(x) =
N∑

j=0

sj Pj(x). (26)

Then all roots of fN(x), both on and off the canonical expansion interval, x ∈ [−1, 1], are eigenvalues of the

N × N matrix ��P whose elements are

Pjk =

⎧
⎪⎪⎨

⎪⎪⎩

δ2,k, j = 1, k = 1, 2, . . . , N,
j−1
2j−1δj,k+1 + j

2j−1δj,k−1, j = 1, . . . , (N − 1), k = 1, . . . , N,

(−1) N
2N−1

sj−1
sN

+ N−1
2N−1δk,N−1, j = N, k = 1, , N,

(27)

where δjk is the Kronecker delta function such that δjk = 0 if j �= k, while δjj = 1 for all j.

For a quintic polynomial, we have for example,
∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0
(1/3) 0 (2/3) 0 0

0 (2/5) 0 (3/5) 0
0 0 (3/7) 0 (4/7)

(−1) 5
9

s0
s5

(−1) 5
9

s1
s5

(−1) 5
9

s2
s5

(−1) 5
9

s3
s5

+ (4/9) (−1) 5
9

s4
s5

∣∣∣∣∣∣∣∣∣∣

. (28)

The complete Matlab code to generate the companion matrix is given as Table 2.

A.2 Gegenbauer polynomials and spherical harmonics

The Gegenbauer polynomials, also known as the ultraspherical polynomials, depend on an order param-
eter m which is the subscript on the functions. The polynomials include the Chebyshev and Legendre
polynomials as the special cases m = 0 and m = 1/2, respectively. The Gegenbauer polynomials for half-
integer m are, modulo a non-negative factor, the latitudinal parts of spherical harmonics. A multiplicity of
notations and normalizations are employed. We shall specify the Gegenbauer polynomials uniquely, as in
[10, Appendix A] by their recurrence

C(m)
0 ≡ 1 ; C(m)

1 (x) ≡ 2 m x, (29)

(n + 1) C(m)
n+1(x) = 2 (n + m) x C(m)

n (x)− (n + 2m − 1) C(m)
n−1(x).

Theorem 5 The roots of a series of Gegenbauer polynomials,

fN(x) =
N∑

j=0

sj C(m)
j (x) (30)
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are the eigenvalues of the matrix whose elements are

G1k = δ2k(1/[2m]), j = 1 (31)

Gjk = (j − 1 + 2m − 1)
2 (j − 1 + m)

δj−1,k + j
2 (j − 1 + m)

δj+1,k, j = 2, . . . , (N − 1), (32)

GNk = − sk−1
N)

2 (N−1+m)

sN
+ δN−1,k

(N − 2 + 2m)
2 (N − 1 + m)

, j = N, (33)

For a polynomial of degree four in Gegenbauer form,
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1/[2m] 0 0
2m

2 (1 + m)
0

2
2 (1 + m)

0

0
2m + 1

2 (2 + m)
0

3
2 (2 + m)

−4
2 (3 + m)

s0

s4

−4
2 (3 + m)

s1

s4

[ −4
2 (3 + m)

s2

s4
+ (2m + 2)

2 (3 + m)
)

] −4
2 (3 + m)

s3

s4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (34)

A.3 Hermite polynomials and Hermite functions

Theorem 6 (Hermite companion matrix) Let fN(x) denote a polynomial of degree N written in “Hermite
form” as

fN(x) =
N∑

j=0

hj Hj(x) (35)

or a function that is a truncated series of Hermite functions,

fN(x) =
N∑

j=0

hj ψj(x), (36)

whereψj(x) = exp(−[1/2]x2)Hj(x). (Note that the Gaussian factor that is part of the definition of the Hermite
functions has no effect on the zeros of the sum of the series.) Then all roots of fN(x), both on and off the

canonical expansion interval, x ∈ [−∞, ∞], are eigenvalues of the N × N matrix ��H whose elements are

Hjk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1/2)δ2,k, j = 1, k = 1, 2, . . . , N,

(j − 1)δj,k+1 + 1
2
δj,k−1, j = 2, . . . , (N − 1),

(−1)
1
2

hj−1

hN
+ (N − 1)δk,N−1, j = N,

(37)

where δjk is the usual Kronecker delta function.

For a quintic polynomial, the matrix is
∣∣∣∣∣∣∣∣∣∣∣∣

0 (1/2) 0 0 0
1 0 (1/2) 0 0
0 2 0 (1/2) 0
0 0 3 0 (1/2)

(−1)
h0

2 h5
(−1)

h1

2h5
(−1)

h2

2h5
(−1)

h3

2h5
+ 4 (−1)

h4

2 h5

∣∣∣∣∣∣∣∣∣∣∣∣

. (38)
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A.4 General orthogonal polynomials

Theorem 7 (General polynomials) If a set of polynomials ψn(x) satisfy a three-term recurrence relation
such that

xψn = B(n)ψn+1 + D(n)ψn + E(n) ψn−1 (39)

then the roots of the polynomial

fN(x) ≡
N∑

j=0

sj ψj(x) (40)

are the eigenvalues of the companion matrix with elements

Qjk =
⎧
⎨

⎩

D(0)δ1k + B(0)δ1,k−1, j = 1
E(j − 1)δj,k+1 + D(j − 1)δjk + B(j − 1) δj,k−1, otherwise

−B(N − 1)sk−1/sN + E(N − 1)δN−1,k + D(N − 1)δNk, j = N,
(41)

where δjk is the Kronecker delta function.

For a quintic polynomial, the companion matrix is
∣∣∣∣∣∣∣∣∣∣

D(0) B(0) 0 0
E(1) D(1) B(1) 0

0 E(2) D(2) B(2)
− B(3) s0

s4

− B(3) s1

s4

− B(3) s2

s4
+ E(3)

− B(3) s3

s4
+ D(3)

∣∣∣∣∣∣∣∣∣∣

. (42)
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